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A di-�-fluoride mixed-valent tetrairon(II,II,III,III) com-
plex, [{Fe2(L)(dnba)}2(�-F)2](BF4)2, was synthesized and char-
acterized by X-ray structural analysis, UV–vis–NIR spectros-
copy, and Mössbauer measurement.

Mixed-valent iron clusters play a most important role for the
maintenance of life in biology, for example, respiration and elec-
tron-transfer processes,1,2 and their spin-delocalized systems
show interesting physicochemical properties.3–5 Therefore, many
mixed-valent iron clusters, which are mainly bridged by O- or
S-donor ligands such as hydroxo, phenolate, carboxylate, and thi-
olate, have been reported.6,7 However, these reports on mixed-
valent tetrairon clusters except for iron–sulfur clusters are scarce
although there are many reports of dinuclear clusters. Previously,
we reported the preparation of a series of oxo- and phenolate-
bridged tetrairon(III) complexes, [{Fe2(L)(L

0)}2(�-O)2](PF6)2,
and their mixed-valent Fe4

II,II,III,III derivatives, where L2� was
a phenol-based dinucleating macrocyclic ligand derived from
the cyclic [2þ 2] condensation of 2,6-diformyl-4-methylphenol
and 1,3-diaminopropane (Scheme 1) and (L0)� was a bidentate
end-cap ligand such as a carboxylate, a phosphate, or a diethyl-
dithiophosphate.8 These tetrairon structures were prepared by
dimerization of two diiron units, [Fe2(L)(L

0)]3þ, using an oxo
bridge, leading us to expect that a new tetrairon structure with
other bridging ligand instead of oxo would be prepared. This
paper describes preparation and characterization of intramole-
cular electron-transfer properties of a mixed-valent di-�-fluor-
ide Fe4

II,II,III,III complex, [{Fe2(L)(dnb)}2(�-F)2](BF4)2.2H2O
(1.2H2O), where dnb

� as end-cap ligand is 3,5-dinitrobenzoate.
1.2H2O was obtained by the reaction of Fe(BF4)2.6H2O,

Na2L, and sodium 3,5-dinitrobenzoate (Na(dnb)) in a 2:1:1 mo-
lar ratio in methanol solution under nitrogen atmosphere (yield:
63%), where the incorporation of two fluoride anions into the
cationic portion of 1 was confirmed by ESI/TOF-MS measure-
ment (obsd m=z ¼ 744:072, calcd m=z ¼ 744:073) in MeCN.9

Furthermore, ESI/TOF-MS data also shows that the tetranuclear
structure is maintained in MeCN solution.10 The bridging fluo-
ride ion must arise from the decomposition of BF4

� ion.11 The

effective magnetic moment of 1.2H2O is 10.26BM per mole-
cule at 300K, indicating that the present complex has mixed-
valent Fe4

II,II,III,III (�S.O. ¼ 10:86).10 Single crystals suitable
for X-ray crystallography ([{Fe2(L)(dnb)}2(�-F)2](BF4)2 (1))
were obtained upon recrystallization from dry-DMF/diethyl
ether.9 The structure of the cationic portion of 1 determined at
183K is shown in Figure 1. The Fe atoms in the dinuclear
{Fe2(L)(dnb)}

2þ unit are bridged by two phenolic oxygen atoms
of L2� and the carboxylate group of dnb�, and the two dinuclear
units are connected by two fluoride ions to afford a tetranuclear
di-�-fluoride-bis[di-�-phenolatodiiron(II,III)] core. There is an
inversion center at the center of the two bridging fluoride anions,
and two Fe atoms in the dinuclear unit (Fe(1) and Fe(2)) are crys-
tallographically not equivalent but have a similar pseudo octahe-
dral geometry with the N2O2 donor atoms of L2� on the equato-
rial plane and a carboxylate oxygen and a fluoride ion at the axial
sites. The geometric features of the dinuclear unit somewhat
resemble those of the related a spin-delocalized mixed-valent

Scheme 1. Chemical structure of H2L.

Figure 1. An ORTEP structure of cation part of 1 at 183K
drawn with the 40% thermal ellipsoids. Selected bond lengths
[Å] and angles [�]: Fe(1)���Fe(2) 2.835(1); Fe(1)���Fe(2�)
3.892(1); Fe(1)–N(1) 2.115(3); Fe(1)–N(2) 2.132(3); Fe(1)–
O(1) 2.004(3); Fe(1)–O(2) 2.023(2); Fe(1)–O(3) 2.065(3);
Fe(1)–F(1) 1.976(2); Fe(2)–N(3) 2.127(3); Fe(2)–N(4)
2.134(3); Fe(2)–O(1) 1.993(2); Fe(2)–O(2) 2.012(3); Fe(2)–
O(4) 2.072(3); Fe(2)–F(1�) 1.966(2); Fe(1)–O(1)–Fe(2)
90.4(1); Fe(1)–O(2)–Fe(2) 89.3(1); Fe(1)–F(1)–Fe(2�) 161.8(1).
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diiron(II,III) complex, [Fe2(L)(AcO)2](ClO4) (av Fe–donor (in-
plane) 2.087 Å, Fe–Ophenolate–Fe: 84.83�, Fe���Fe0: 2.741 Å).4
In addition, the Fe–F distance of 1 (av 1.971 Å) is intermediate
between the FeIII–F (1.938 Å) and FeII–F (2.068 Å) bond dis-
tances for the valence-trapped Fe4

II,II,III,III complex, [Fe4(Me4-
tpdp)2(�-F)2(OH)2(H2O)2](BF4)4 (Me4-tpdp

� = N,N,N0,N0-tet-
rakis[2-(6-methylpyridyl)methyl]-1,3-diamino-2-propanol).12

The electronic absorption spectrum in acetonitrile at room
temperature shows three absorption bands at 348 nm (":
18350M�1 cm�1), 480 nm (": 4200M�1 cm�1), and 1202 nm
(": 1150M�1 cm�1) attributable to the �–�� transition band
associated with the azomethine group of L2�, the LMCT band
from the phenolate oxygen to FeIII center, and the intervalence
transition (IT) band, respectively.6,7,13 The position and intensity
of the IT band resemble those of related [Fe2(L)(AcO)2]ClO4

(� ¼ 1060 nm, " ¼ 1250M�1 cm�1).4 According to Hush’s
theory, the classification of a mixed-valent system is defined
as follows; (i) the correlation between the half-band width
(��1=2) of the observed IT band and calculated from the band
maximum frequency �max as ��1=2 ¼ ð2310� �maxÞ1=2 and (ii)
the solvent dependency of the position and intensity of the IT
band.14 The half-band width of the band at 1200 nm is
4700 cm�1, that agrees with the calculated value (4510 cm�1)
by the above equation. In addition, the position and intensity
of the IT band show solvent dependence (1124 nm and
719 cm�1 M�1 in DMF). Thus, the present complex belongs to
Class II in the classification by Robin and Day.15 The electron
delocalization coefficient, �2, can be calculated by the equation,
�2 ¼ ð4:25� 10�4Þ � "max��1=2=�maxr

2, where r is the inter-
metal separation. From crystallographic analysis of 1, the Fe���Fe
separation within a dinuclear unit (2.835(1) Å) is shorter than
that between dinuclear units (3.893(1) Å). Thus, the electron-
transfer rate for the present complex is mainly dominated within
dinuclear units rather than between dinuclear units because the
electron-tranfer rate depends on the M���M separation.5 The �2

value of the present complex was evaluated to be 0.031 using
r ¼ 2:835 Å, ��1=2 ¼ 4500 cm�1, �max ¼ 8800 cm�1, and
"max ¼ 1150M�1 cm�1. In addition, the rate constant (ket) for
electron transfer between phenolate-bridged Fe centers within
a dinuclear unit was estimated to be 1:3� 1012 s�1.14

The Mössbauer spectrum at 180K is shown in Figure 2 and
consists of an asymmetric doublet with an isomer shift of
� ¼ 0:79mms�1 and a quadrupole splitting of �EQ ¼ 2:04
mms�1. The isomer shift and the quadrupole splitting of 1 are
close to those of the spin-delocalized FeIIFeIII complex,
[Fe2(L)(AcO)2]ClO4 (� ¼ 0:71mms�1, �EQ ¼ 1:89mms�1),
indicating that the valence of 1 is formally delocalized at

180K.4 The spectrum at 5K shows the presence of two doublets:
(A) � ¼ 0:68mms�1 and �EQ ¼ 1:89mms�1 and (B) � ¼
1:04mms�1 and �EQ ¼ 2:23mms�1, which are attributable
to the discrete FeIII and FeII sites, respectively.10 Namely, the va-
lence state at 5K is localized. A relatively large �EQ for FeIII

component compared with typical FeIII ions may be resulted
from the large electric field gradient.6a
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Figure 2. Mössbauer spectrum of 1.2H2O at 180K.
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